
Reducing Feedback for Opportunistic Scheduling in

Wireless Systems

Shailesh Patil and Gustavo de Veciana

Wireless Networking and Communications Group

Dept. of Electrical and Computer Engineering

The University of Texas at Austin

{patil,gustavo }@ece.utexas.edu

Abstract

We study reducing the feedback overheads for users’ channel state information required for opportunistic

scheduling at a base station. We first consider only best effort traffic, here we propose a contention based scheme

known as ‘static splitting’ to reduce the amount of feedback needed. The idea is to divide users into static groups,

with users that belong to a group and have their current channel quality above a threshold contending to send

their current feedback. We combine static splitting with maximum quantile scheduling – scheduling a user whose

current rate is high relative to its distribution, to obtain thresholds that are independent of users’ channel capacity

distributions. Our simulation results show that the proposed scheme can do better than other schemes. Next we

consider supporting a mixture of best effort and real-time traffic. Here we combine combine contention based

approach with polling subsets of users to propose a joint polling and opportunistic scheduling (JPOS) scheme that

reduces the amount of feedback, while meeting real-time users’ quality of service guarantees. Under fast fading,

we prove a lower bound on the service seen by a real-time user under JPOS and propose a heuristic that exploits

opportunism across all users.

Index Terms– Feedback, opportunistic scheduling, protocols, quality of service.

Part of this work was presented at Allerton 2005 as aninvited paper.

2

I. I NTRODUCTION

Motivation. Scheduling of users’ downlink data transmissions at a base station has attracted a substantial

amount of attention, see e.g., [6][7]. A key feature of wireless systems relative to the traditional wireline

systems is that the channel capacity, or service rate, may exhibit temporal variations. This allows one to

consider scheduling policies that choose to send to, or receive from, a user (or a subset of users) which

at a given point in time has (have) the ‘best’, e.g., highest, capacity. Such opportunistic scheduling can

lead to substantial increases in the aggregate capacity of a wireless system, and has thus been adopted in

various wireless standards, such as CDMA-HDR [1].

Whenever a base station makes an opportunistic decision on the user(s) to serve, it needs to know the

‘current’ channel capacity (or some function of it) for all of the users. Therefore beforeeachdecision,all

users need to transmit their current channel conditions to the base station. This can be a high overhead

in terms of the bandwidth and the energy expended (especially at the mobile) for feedback, as compared

to the gains in throughput that one might hope to glean from opportunistic scheduling.

For example, consider a 100 user system whereall users are experiencing independent and identically

distributed (i.i.d.) Rayleigh channel fading signal to noise ratio (SNR) and all feedback their channel state

prior to each data transmission slot. Here one can achieve 90% of the gain in average SNR of the user

served by soliciting feedback from a random subset of only 60 users and serving the user with the highest

current SNR among them. This underscores the need and the potential to reduce feedback required to

realize the major gains of opportunistic scheduling.

One can reduce the resources used for feedback in the following two simple ways.

Contention.In the contention based approach users compete for a pool of resources allocated, e.g.,

CDMA code, a time slot, etc., to feed back their current channel capacity state. For example, a user

may opportunistically send its feedback if its current channel capacity is above a certain threshold. The

thresholds are designed so that feedback is successful, i.e., only one or a limited number of users contend

at the same time. This allows one to achieve a large part of the opportunistic gains possible over long time

periods. However, it is possible that feedback gets wasted because too many users contend to transmit

3

their states. Therefore occasionally no opportunism is exploited.

Polling. Alternatively the base station may solicit feedback from a subset of users, i.e., allocates feedback

resources for the subset of users, and choose to opportunistically serve among them. Since we are exploiting

opportunism over only a subset of users the long term gains of this approach are generally lower than

the contention based approach. However, since there is no wasting of feedback resources, some degree

of opportunism is almost always exploited.

Related Work.Let us discuss some of the previous work done in this area. A simple threshold based

scheme was proposed in [4] to reduce the feedback overhead. Their each user had a dedicated resource for

sending its feedback. The idea was to only allow a user whose current channel capacity exceeds a threshold

to feedback his current state. Their scheme reduced the amount of feedback required significantly, while

achieving most of the gains of opportunism. However, even though the energy spent in transmitting and

receiving the feedback is reduced, the need for other resource requirements (like bandwidth, etc.) for

sending feedback is not reduced.

Some contention based schemes have also been proposed in the literature. One of the frequently cited

ideas is ‘opportunistic splitting’ proposed in [11]. The scheme was proposed in an uplink context, but it is

applicable to downlink scheduling (which is the focus of this paper). The idea is to divide time into equal

sized time units, each unit consists of mini slots which are pooled resources used to learn the current

channel capacity of users via feedback, while the rest of the unit is used for data transmission.

In opportunistic splitting, initially a pair of thresholds depending on the number of users is set. At the

start of the first mini slot, every user whose current channel capacity is between the pair of thresholds

contends, i.e., transmits to the base station. The base station then broadcasts to all the users whether on

the mini slot no user contended, exactly one user contended, or a collision occurred, i.e., more than one

user contended and the base station was unable to decode any information. Depending on the broadcast

message received, each user modifies its threshold according to a binary search like algorithm and users’

whose channel capacity is between the new thresholds contend in the next mini slot. This process continues

until exactly one user contends, this user is guaranteed to be the user with currently the highest channel

4

capacity. The authors show that on average 2.5 mini slots will be required for the algorithm to find the

user with the highest current channel capacity.

However, opportunistic splitting requires two way communication and coordination between the base

station and users every mini slot, and a variable number of mini slots can be used in a time unit. This

may be hard to implement since the time scales involved are quite small, usually less than milliseconds

in practical systems. To overcome this problem, a random access based feedback protocol was proposed

in [15], where only one way communication is required, and the number of mini slots were fixed. In

each mini slot, users whose current channel capacity exceeds a threshold contend with some probability.

If on a given mini slot exactly one user contends, then that user’s identity is stored at the base station.

Subsequently the base station randomly serves one of the identified users. The threshold and probability of

contention can be optimized to maximize the overall sum capacity if the channel distributions are known.

However, simulation results presented in the paper show that a truncated and thus comparable version of

opportunistic splitting usually performed better than the proposed scheme. (Some researchers have also

studied reducing feedback in OFDM systems [13][14], which is not the focus of this paper.)

An underlying assumption in the above research was that users in the system see i.i.d. channel capacity

distributions. (Note that an extension of opportunistic splitting to the case where users can experience

one of two possible channel capacity distributions is presented in [12], however this still does not seem a

reasonable model.) In practice users’ channel capacity variations are heterogenous, e.g., users close to a

base station see significantly different channel capacity than those further off. Extending these schemes to

the non i.i.d. case is in general very complex, because the thresholds then will not only be dependent on

the user’s own channel capacity distribution and the number of users, but also other users’ channel capacity

distributions. Ideally one would like to have an easy way to set the thresholds for the heterogeneous case.

All of the above mentioned work focussed on reducing feedback in the context of opportunistic

scheduling of best effort traffic. Whereas base stations are likely to support a mixture of both best effort

and real-time traffic. Real-time traffic has requirements over short time scales, therefore for real-time

traffic to benefit from opportunism one needs to exploit opportunism over short time scales. Additionally,

5

as the deadline for meeting users’ quality of service (QoS) requirement approaches, the base station needs

to serve only those users whose deadline is nearing. Therefore the base station can exploit opportunism

among only the subset of users that are roughly in equal danger of not meeting their QoS requirements.

Summarizing, the need for efficient utilization of feedback resources is higher here.

Contributions. We first propose a contention based scheme, which we shall callstatic splitting, also

geared at reducing feedback overheads in a best effort traffic only scenario. Like [15], our setup consists

of a fixed number of mini slots, and does not require two way communication. We will combine static

splitting with a distribution based scheduler that we callmaximum quantile scheduling[7][2][12] to handle

heterogeneity in users’ channel capacity variations. The idea there is to schedule the user whose current

rate is highest relative to hisown distribution, i.e., in the highest quantile. Under maximum quantile

scheduling one can compute a common threshold determining when users are to transmit feedback, which

is independent of their possibly heterogenous channel distributions. This is unlike other proposed schemes

as it allows off-line calculation of ‘optimal’ thresholds.Our simulation results indicate that static splitting

can perform much better (for example 40% improvement) than a truncated form of opportunistic splitting.

We then consider a scenario where traffic is a mixture of best effort and real-time traffic, for which

QoS guarantees have to be met over short time scales. We argue that in such a scenario a combination

of contention and polling based feedback strategies is needed. Based on this insight, we combine static

splitting and dynamic polling with a variation of a token based scheduling scheme proposed in [9] to

provide QoS. We call this thejoint polling and opportunistic scheduling(JPOS) scheme. Under fast fading,

we show a lower bound on the service seen by a real-time user under the JPOS scheme. Furthermore, based

on this scheme we propose a heuristic that simulations indicate not only meets users’ QoS guarantees,

but achieves up to 89% of system capacity in terms of the long term throughput that is realized.

Paper Organization.The paper is organized as follows. In Section II we give a brief introduction to

maximum quantile scheduling and describe the proposed static splitting scheme in the best effort traffic

only scenario. In Section III we consider the case where traffic is a mixture of both best effort and real-

time flows and describe the proposed JPOS scheme to reduce feedback in such mixed scenario. Simulation

6

results are presented in Section IV, and Section V concludes the paper.

II. OPPORTUNISTICFEEDBACK BASED ON STATIC SPLITTING

A. System Model and Notation

We begin by introducing our system model and some notation. For simplicity, we focus on downlink

scheduling from a base station to multiple users. Suppose time is divided equal size ‘time units’. Each

time unit consists ofk equal size mini slots followed by a transmission slot during which at most one user

can be served (see Figure 1). Thek mini slots are used for collecting feedback. We will define the exact

nature of the feedback later. In the sequel we use the terms ‘channel capacity’ and ‘rate’ interchangeably

and make the following assumption on user’s channel capacity characteristics over time units.

Assumption 2.1:We assume the channel capacity for each user is a stationary ergodic process and these

processes are independent, but not necessarily identically distributed across users. Further we assume that

the marginal distribution for each user is continuous and is known a priori at the user.

Some comments on this assumption. First the channel capacities seen by users might indeed be roughly

stationary over a reasonable period of time particularly if users are at fixed locations. The assumption that

users’ rates are independent is also likely to be true, though a notable exception is the case where mobile

users move in a correlated manner, e.g., along a highway. The assumption that a user has a priori knowledge

of the marginal distributions for the channel capacity may not be completely reasonable. Yet, simple book

keeping of the currently achievable rate can be used to obtain estimates for the marginal distributions.

(This assumption is implicitly used in all of the previous work discussed above [15][4][12][11]). We

require the users’ rates to be continuous only to keep our discussion simple. (In fact we perform our

simulations for discrete rate distributions.) For details on handling the discrete case we refer the reader

to Chapter 2 of [8]. Note that channel capacities are not restricted to having a specific distribution, or

even to a class of distributions, i.e., users can undergo arbitrary fading processes. This makes the analysis

presented in the sequel applicable to real world scenarios.

We will let xi(t) denote the realization of the downlink channel capacity/rate of useri at time unitt,

and letX i be a random variable whose distribution is that of the channel capacity of useri on a typical

7

time unit. Recall that we assumeX i to be continuous random variables that are independent but need not

necessarily be identically distributed across users. We denote the distribution function ofX i by FXi(·).

For simplicity, we will assume thatFXi(·) is a strictly increasing function, so that its inverse denoted by

F−1
Xi (·) is defined. Finally note that by Assumption 2.1FXi(·) is known at the user.

For analysis purposes, we will only consider a ‘fixed saturated’ regime where there is a fixed number

of n users in the system and each user is infinitely backlogged. For now we allow only best effort flows.

B. Maximum Quantile Scheduling

Let us briefly discuss maximum quantile scheduling now. Maximum quantile scheduling was indepen-

dently proposed by several researchers under different names in . Specifically [7] proposed a ‘CDF based

scheme’, [2] proposed the so called ‘score based scheduler’ and [12] proposed the notion of a ‘distribution

fairness’ based scheduler. In our own work we have studied properties of such an opportunistic scheduling

scheme: in terms of enabling quality of service guarantees for real-time traffic in [9]; and, evaluating its

performance in a measurement based set up in [10].

The main idea is to schedule a user who’s rate is highest relative to itsown distribution, i.e., serve user

i∗(t) during time unitt if

i∗(t) ∈ arg max
i=1,...,n

FXi(xi(t)).

It is well known thatFXi(X i) is uniformly distributed on[0, 1]. Note thatFXi(X i) is the quantile of the

rate of useri on a typical time unit, then we see that maximum quantile scheduling can be viewed as

picking the maximum among i.i.d. uniform random variables corresponding to the quantile for the current

rate of each user. Then maximum quantile scheduling is equally likely to serve any user on a typical slot,

and as a result all users get served an equal fraction of time, i.e.,1
n

th
of time.

Let X i,(n) denote the maximum ofn i.i.d. copies ofX i, i.e., X i,(n) := max[X i
1, . . . , X

i
n], whereX i

j ∼

X i, ∀j = 1, . . . , n. Then, the average throughput seen by useri under maximum quantile is given by

Gi
mq(n) =

E[X i,(n)]

n
. (1)

8

Maximum quantile scheduling has very desirable properties, it maximizes the amount of opportunism,

i.e., quantile of the user being served, is intrinsically temporally fair, and asymptotically in the number

of users, maximizes the sum throughput [10]. As compared to other opportunistic scheduling schemes

proposed in literature, e.g., maximum throughput [6], proportionally fair [1], etc., maximum quantile

has some distinct advantages in handling cases where users have heterogeneous rate channel capacity

distributions and one must resort to estimating parameters [10]. In this paper, we will focus on channel

feedback schemes which are compatible with opportunistic scheduling of users currently experiencing

channel capacity in the high quantile, i.e., highFXi(xi(t)).

C. Proposed Static Splitting Feedback Scheme for Best Effort Traffic

Recall that in each time unit the data transmission part is preceded byk mini slots. The objective

during the mini slots is to identify a user whose current rate is in a high quantile, and not necessarily

identify the user with the highest quantile (we will revisit this point later). For simplicity we will assume

in this subsection that the number of usersn is such thatn
k

is an integral value. In the proposed scheme

users are split intok equal sized ‘static’ groups, and each group is associated with a mini slot. A user

can only contend (i.e., send feedback) on the mini slot with which its group is associated. Based onn

and k (which a user learns from the base station), each user calculates (looks up) a common quantile

threshold denoted byq, which is used to determine if it will contend by transmitting feedback – we will

give details on optimizingq later. Specifically, recall that at time unitt, the rate useri can support is

denoted byxi(t). Prior to useri’s mini slot the user would check ifxi(t) > F−1
Xi (q), and if so it would

transmit the quantileFXi(xi(t)) of its current rate to the base station.

If only one user contends during a given mini slot, we assume that the base station is able to both

decipher and store the identity and the current value of the quantile of the user. If more than one user

contends for a given mini slot, a collision occurs, and the base station stores this fact. Finally, if no user

contends for the mini slot, then no action is taken. The process is repeated across all mini slots.

Once the contention for mini slots is finished, if the base station was able to identify at least one

user, then it serves the user with the highest quantile among the identified users. Else, if the base station

9

fails to identify any such user, then it serves a randomly selected user. This can occur in two ways, if

collisions have been recorded for none of the mini slots, then a user is randomly selected from all the

users. However, if a collision occurred on at least one of the mini slots, then a user is randomly selected

for service among the groups of users associated with the mini slots where collisions occurred. Doing so,

increases the chance of choosing a user with a high quantile.

The last challenge for this simple protocol is determining a good choice for the contention thresholdsq.

Let Ai denote the event that useri is selected under the above scheme and1Ai be the indicator function

for Ai. Our goal is to serve users so as to maximize the expectedsum quantileE[
∑n

i=1 FXi(X i)1Ai]

of the scheduled users. Since each mini slot has exactly the same number of users associated with it,

FXi(X i) are i.i.d. across users, and since all users share a common thresholdq, it follows by symmetry

that each user is equally likely to be selected, i.e.,Pr(Ai) = 1
n
, and so

E[
n∑

i=1

FXi(X i)1Ai] =
n∑

i=1

E[FXi(X i)|Ai] Pr(Ai) =
1

n

n∑
i=1

E[FXi(X i)|Ai].

Again by symmetry, it suffices to optimizeq to maximizeE[FXi(X i)|Ai] for any user.

Let Ai
b, b = 1, . . . , k denote the event that successful contention occurs overb mini slots, and useri

is selected for service (because it had the highest quantile among theb identified users). We shall letAi
0

denote the event that useri is selected at random in the case where the feedback scheme was not able to

identify any user. Note thatAi
b, b = 1, . . . , k andAi

0 form a partition ofAi and so we have that

E[FXi(X i)|Ai] =
k∑

b=1

E[FXi(X i)|Ai
b] Pr(Ai

b|Ai) + E[FXi(X i)|Ai
0] Pr(Ai

0|Ai). (2)

Let pn denote the probability that a user is able to successfully contend in a mini slot in a time unit

with n competing users, thenpn = n
k
(1− q)q

n
k
−1. Now consider

∑n
i=1 Pr(Ai

b), it is the total probability

of selecting a user that has the highest quantile among the exactlyb identified users. This is equal to the

probability that the base station identifies exactlyb users, i.e., successful contention onb mini slots, then,

n∑
i=1

Pr(Ai
b) =

(
k

b

)
(pn)b(1− pn)k−b.

Now by symmetry, for any useri, Pr(Ai
b) = 1

n

(
k
b

)
(pn)b(1− pn)k−b. Furthermore sincePr(Ai) = 1

n
,

Pr(Ai
b|Ai) =

(
k

b

)
pb

n(1− pn)k−b.

10

One can also easily show that

E[FXi(X i)|Ai
b] =

b

b + 1
(1− q) + q.

Finally, we have that

Pr(Ai
0|Ai) = 1−

k∑

b=1

Pr(Ai
b|Ai),

and by ignoring the conditioning we can approximateE[FXi(X i)|Ai
0] (i.e., the average quantile of the

selected user when it is selected at random) as

E[FXi(X i)|Ai
0] ≈

1

2
.

Putting these results together we can rewrite (2) as

E[FXi(X i)|Ai] ≈
k∑

b=1

(
k

b

)
pb

n(1− pn)k−b(
b

b + 1
(1− q) + q) +

1

2
(1− pn)k. (3)

A good thresholdq should maximize the above approximation. This can be done numerically by

searching overq ∈ [0, 1]. Table I lists the optimum thresholdq for an increasing number of users for

k = 2, . . . , 9. The threshold increases withn for a givenk, and withk for a givenn
k
, as might be expected.

Note that (3) is independent of users’ channel capacity distributions and can also be used to find an

approximate value ofq even whenn
k

is not an integral value. As mentioned earlier, unlike other schemes,

this eliminates the need for online real-time calculations, it is sufficient to do off-line calculation of

thresholds and store them in a table.

Some final comments, note that opportunistic splitting was designed to find the user with the highest

quantile/rate. In a practical system where the number of mini slots may be limited, if the scheme is unable

to find the user with the highest quantile in those many mini slots, a user has to be chosen at random. This

is not desirable. Whereas if static splitting is unsuccessful in finding the user with the highest quantile, it

is still likely to serve a user with high quantile. The possibility of serving a high quantile user is captured

in (3), in fact the expression also captures the performance of the scheme even when a user is selected

at random. Therefore by maximizing (3), one can obtain better performance as compared totruncated

opportunistic splitting especially for small values ofk. We will verify this using simulations in Section IV.

11

III. R EDUCING FEEDBACK FORSCHEDULING SCHEMES PROVIDINGQUALITY OF SERVICE

As discussed in Section I, when attempting to ensure quality of service to flows one has to exploit

opportunism over small time scales and exploit opportunism among only those users that are roughly in

the same danger of not meeting their QoS requirements. Polling based feedback mechanisms meet these

criteria. In particular one can exploit opportunism over short time scales, and by dynamically deciding

from whom to solicit feedback, one can exploit opportunism only among a desired subset of users.

However as mentioned earlier, a polling based approach is not as efficient at exploiting opportunism

as a contention based approach. Therefore it makes sense to use contention based static splitting for

scheduling best effort users and polling for scheduling of real-time users. We propose a modified form

of the scheduling scheme proposed in [9] that is compatible with such a feedback strategy.

First let us modify our system setup to include real-time traffic flows. In our new setup each user is

either associated with a real-time or a best effort stream, but not both1. The total number of users is still

denoted byn, while the number of real-time users will be denoted bynr. For simplicity consider the case

where both real-time and best effort users are infinitely backlogged.

The notion of QoS considered in this paper involves ensuring a useri sees a desired rateri over a

frame of lengthτ with an outage probability ofδi. More formally, we divide time into equal sized frames

consisting ofτ time units and our goal is to ensure that for each of these frames

Pr(Ri(τ) ≥ ri) ≥ 1− δi,

whereRi(τ) is a random variable denoting the cumulative rate seen by useri during a frame.

To guarantee the required QoS, we will use a stochastic envelope based approach [3][5]. The idea is

to stochastically lower bound the actual serviceRi(τ) by a quantityRi(τ), i.e., ∀r, Pr(Ri(τ) ≥ r) ≥

Pr(Ri(τ) ≥ r). This is usually denoted as follows

Ri(τ) ≥st Ri(τ).

1We note that this is done only for simplicity, our scheme can be easily modified to allow a user to get associated with multiple real-time

and/or best effort streams.

12

Therefore if Ri(τ) meets the QoS guarantee then so willRi(τ). Ideally we also wantRi(τ) to be

analytically tractable so as to enable resource allocation strategies.

We make an additional assumption here on users’ rate in this section. We assume that users’ channel

capacity is fast fading, i.e., for any useri the realizations ofX i’s are independent across slots.

A. Joint Polling & Opportunistic Scheduling Scheme

As discussed above, our goal is to give users rate guarantees over a frame ofτ time units. In the

proposed scheme the idea is to opportunistically serve each real-time user exactlyl times every frame.

This can be thought of as allocating each real-time userl tokens at the start of each frame. Whenever a

real-time user is served, its token count goes down by 1, and when it has been servedl times it is no

longer allowed to contend for service. Note that it is required thatnrl ≤ τ so that it is feasible to allocate

l tokens to each real-time user. A key task is to calculate the value ofl so as to meet the users’ QoS

requirements, this will discussed later.

We describe the scheme with an example. Consider a frame size ofτ = 10 time units, where each time

unit containsk = 3 mini slots. The system has 5 best effort users and 3 real-time users, each real-time

user hasl = 2 tokens. We illustrate a realization of the scheme for the example in Fig. 2.

In order to serve each real-time userl times, we divide each frame into two parts. The first part of

the frame consists ofτ − nrl time units and only best effort users are served here. Every best effort user

contends for service in every time unit of the first part via the static splitting with maximum quantile

scheduling mechanism described in Section II. In our example the first part of the frame consists of 4

time units, where best effort users are served (Fig. 2).

During the second part of the frame consisting ofnrl time units, only real-time users are served.

Unlike the first part of the frame, here the feedback mechanism is based on polling. In a time unit the

base station decides to solicit the quantile of the current rate fromk − 1 real-time users that currently

havethe highest remaining number of tokens. Ties among real-time users with equal remaining tokens are

broken randomly. If there are less thank − 1 real-time users that currently have a positive token count,

then all users are solicited for feedback. The first mini slot of each time unit is used to broadcast which

13

mini slot has been assigned to which real-time user for polling its feedback. The remainingk − 1 mini

slots are used to get feedback on users’ quantile information. The base station serves the real-time user

with the highest quantile among those from which feedback was solicited, and the token count for that

real-time user goes down by 1. This process continues until the end of the frame. It should be clear that

by the end of the frame all real-time users would have been servedl times.

Returning to our example, let us describe scheduling in the second part of the frame (Fig. 2). The

second part starts with the5th time unit. During the5th time unit, all real-time users havel = 2 tokens

each. Using random tie breaking, the base station chooses to solicit feedback from real-time users 1 and

3. Since real-time user 3 currently has the higher quantile, it gets served and its token count goes down.

In the6th time unit because real-time users 1 and 2 have a higher remaining token count of 2, feedback is

solicited from them, and real-time user 1 (on account of its higher current quantile) gets served. In the7th

time unit using random tie breaking among real-time users 3 and 1, feedback is solicited from real-time

users 2 and 1, and real-time user 1 gets served. Now since real-time user 1 has been servedl = 2 times,

it will no longer be served. In the next time unit real-time users 2 and 3 get polled, and real-time user 2

is served. In the9th time unit real-time user 3 gets served and is no longer considered for service. Finally

in the 10th time unit real-time user 2 is polled and served. Note that this is only one of the realization of

the scheme the scheme could have proceeded in multiple ways.

Note that by choosing to poll users that have the highest remaining number of tokens we are not only

polling users that have the highest danger of not meeting their QoS requirements, but also are keeping as

many real-time users in the system as possible. This allows one to exploit a larger amount of opportunism

as compared to the case where some users leave early.

The above scheme ensures QoS by serving each user exactlyl times. However in doing so, it exploits

opportunism available among the best effort users in the first part of the frame, and exploits opportunism

among real-time users in the second part of the frame. In other words the scheme is able to exploit (only)

intra class opportunism. Later we will propose a heuristic that will also exploit inter class opportunism.

14

B. Analysis and Resource Allocation

The number of ways in which the above described scheme can serve a real-time user grows exponentially

with the number of tokens allocated, make it hard to analyze the service seen by a real-time user. Therefore

we try to lower bound the service seen by a real-time user, which in turn will allow us to conservatively

estimate the value ofl.

The service seen by a real-time user under the JPOS scheme satisfies three properties which allows us

to develop a lower bound. These were first described in [9], we reproduce them here.

Property 3.1: (Equal Resource Allocation.) All real-time users are allocated an equal numberl of

tokens.

Property 3.2: (Symmetric Selection.) In a typical time unit, each real-time user (with a positive token

count) is equally likely to be selected for service.

Property 3.3: (Monotonicity.) Let X̃ i,(m) be the random variable denoting the rate seen by useri given

it is selected for service while competing withm− 1 other users, then∀ l, X̃ i,(m+1) ≥st X̃ i,(m).

It is clear that since all real-time users are allocatedl tokens each, Property 3.1 is satisfied. Property 3.2

is trivially satisfied in the first part of the frame. In the second part of the frame, all users start with an

equal number of tokens. Furthermore in each time unit, among real-time users having an equal token

count there is random tie breaking in deciding whom to poll, and the quantile of all real-time users are

uniformly distributed. From these three symmetrical conditions one can show that Property 3.2 holds for

the second part of the frame. For Property 3.3, consider a time unit in the second part of the frame with

m real-time users are competing. If useri gets selected, then ifm ≥ k − 1 it sees a service ofX i,(k−1),

else it sees a service ofX i,(m) (see Subsection II-B). Clearly Property 3.3 is satisfied here.

We introduce some notation now. LetZi∗
j be the random variable denoting the rate received by real-time

useri conditioned on it getting selected for service thejth time under the above described JPOS scheme.

Then the total service seen by real-time useri under the JPOS scheme is given by
∑l

j=1 Zi∗
j . Now define

15

a mixture random variableY i

Y i =





X i,(k−1) w.p. 1− k−2
nr

X i,(k−2) w.p. 1
nr

. . . w.p. . . .

X i,(1) w.p. 1
nr

.

(4)

One can think ofY i as useri getting selected for service in the second part of the frame when competing

with greater than or equal tok−1 real-time users with probability1− k−2
nr

, or getting selected for service

when competing withk − 2 users with probability 1
nr

and so on. Note thatY i only depends onX i and

nr, but does not depend on the channel rate distribution of other users.

We now show that
∑l

j=1 Zi∗
j ≥st

∑l
j=1 Y i

j , where Y i
j ’s are i.i.d. and∀j = 1, . . . , l, Y i

j ∼ Y i. In

other words, the service seen by useri under the JPOS scheme can be lower bounded by a sum ofi.i.d.

random variables that depends only on the number of real-time users andX i, and yet factors in the

opportunism that can be exploited. In fact, we show a stronger bound, i.e., for any setS ⊆ {1, . . . , l},
∑

j∈S Zi∗
j ≥st

∑
j∈S Y i

j . The following theorem formally states our claim. The proof of the theorem

follows from that of Theorem 3.3 in [9], and is omitted here.

Theorem 3.1:Consider the JPOS scheme where allnr real-time are allocated an equal numberl of

tokens. Then under Assumption 2.1 and fast fading on users’ channel capacities, for any real-time useri

∑
j∈S

Zi∗
j ≥st

∑
j∈S

Y i
j ,

for S ⊆ {1, . . . , l}. HereY i
j ’s are i.i.d. andY i

j ∼ Y i, ∀j = 1, . . . , l.

Now if l′ is large enough, then the distribution of
∑l′

j=1 Y i
j can be roughly approximated, e.g., using

the Central Limit Theorem. Then since each real-time user knows its distribution and can learn the value

of nr from the base station, it can calculate its required number of tokensli as

li = min
l′
{l′ | Pr(

ρ

τ

l′∑
j=1

Y i
j ≥ ri) ≥ 1− δi}, (5)

hereρ is the fraction of time unit that is used for data transmission. The value ofli can be communicated

16

to the base station and the base station can allocate each real-time userl tokens, where

l = max
i=1,...,nr

li, (6)

and allocate each real-time userl tokens. (Of course one requires thatnrl ≤ τ .)

Note that the overhead involved in transmitting the value ofli from each real-time to the base station is

needed only when the number of real-time users change or a real-time user’s channel distribution changes

so much that its token requirement changes. Also note that even if a real-time user requires fewer thanl

tokens, it is still allocatedl tokens. This may seem conservative, however one can group users together

to reduce the total number of tokens required (see [9]).

We performed a simple numerical experiment to evaluate the usefulness of the proposed bound. We

considered a system containing 12 real-time users, with each users requiring a rate guarantee of 40 kbps

over 1 sec with an outage probability of 1%. All users are experiencing i.i.d. Rayleigh fading with a mean

SNR of 2, and CDMA-HDR based mapping was used to map from SNR to rates. Each time unit was of

size5 msec (so the frame size was 200 time units) and consisted ofk = 6 mini slots. The fraction of each

time unit used for data transmission wasρ = 0.9. Our bound suggested that 10 tokens were needed for

each real-time user. To put this in contrast we calculated the number of tokens needed if no opportunism

is exploited, i.e.,

li = min
l′
{l′ | Pr(

ρ

τ

l′∑
j=1

X i
j ≥ ri) ≥ 1− δi},

and found the number of tokens needed to be 18, clearly illustrating the advantage of the bound.

C. Heuristic based Joint Polling & Opportunistic Scheduling Scheme

As discussed earlier the proposed JPOS scheme only exploits the intra class opportunism among the best

effort and real-time users, now we propose a heuristic that exploits both inter and intra class opportunism.

Recall that our goal of polling real-time users was to ensure that users with roughly equal danger of not

meeting their QoS requirements are able to send their feedback and opportunism was exploited among

them. However, in our proposed scheme the danger of not meeting the QoS requirement only occurs if the

total remaining number of token is equal to (or less) than remaining time units in the frame. Otherwise,

17

there is leeway to exploit opportunism across all users, and this can be exploited by allowing real-time

users to compete with best effort users during the first part of the frame. This is the basis for our heuristic.

Like the JPOS scheme, in the proposed modification each real-time user is allocatedl tokens at the

start of each frame. Whenever a real-time user is served, its token count goes down by 1 and when it has

been servedl times, it is no longer considered for service. However unlike the original scheme, we allow

both the best effort and real-time users to compete using maximum quantile based static splitting during

the first part of the frame. Furthermore the size of the first part is dynamic and it lasts until thetotal

number of remaining tokens in the system is equal to the number of remaining time units in the frame.

Then the second part of the frame starts, here like the JPOS scheme only real-time users are served using

polling. The method of deciding the real-time users that are to be polled for their current quantile is the

same as the original scheme, i.e., polling real-time users with thek − 1 highest remaining tokens counts

and using random tie breaking for users with equal remaining token count. As before, the real-time user

with the highest quantile among those polled is served.

To illustrate the scheme more clearly, we use the example described in Subsection III-A to describe the

original scheme. A realization of the scheme is illustrated in Figure 3. Since real-time users are allowed

to contend in the first part of the frame, real-time users 3 and 2 get served in the2nd and 3rd time

units respectively. As a result, the second part of the frame starts at the7th time unit. Therefore, inter

class opportunism is exploited in this period of time. The second phase proceeds as in the original JPOS

scheme, and is shown in the figure.

Even though the proposed modification scheme does exploit both the inter and intra class opportunism

it is difficult to bound the QoS seen by a real-time user. This is because it is not clear whether the

Monotonicity property holds under the scheme. However, we conjecture that calculating the value ofl

according to (5) and (6) will allow us to meet the required QoS guarantees. This conjecture is supported

by the simulation results presented in the next section.

18

IV. SIMULATION RESULTS

Let us describe the general simulation setup. In order to compare the performance of our scheme to

other schemes discussed above, we restricted all users to undergo i.i.d. Rayleigh fast fading with a mean

SNR of 2. We used the CDMA-HDR [1] SNR to rate mapping.

A. Static Splitting Performance

We first simulated static splitting and a truncated form of opportunistic splitting for the best effort

traffic only scenario. The number of users associated with a mini slot were increased from 1 to 7, while

k = 2, 4, 6, 8 mini slots were used.

Note that a mini slot in opportunistic splitting consists of two transmissions, whereas a mini slot

in our scheme consists of only one transmission. Therefore to be fair, we count each transmission for

opportunistic splitting as a mini slot. At the end of the mini slots if the algorithm is unable to find the

user with the highest quantile, then it selects a user at random, i.e., the algorithm is truncated.

We compared the throughput achieved by the schemes to that achieved by a virtual scheme that is able

to select the user with the highest rate every time unit, i.e., the best that the schemes can hope to achieve.

We plot our results as the relative percentage loss in throughput compared to that achieved by the virtual

scheme in Figures 4, 5, 6 and 7. Note that as expected the relative penalty for both the schemes goes

down with increasing value ofk, while it increases with the number of users.

The results also illustrate the advantage of using static splitting, our scheme does better than oppor-

tunistic splitting fork = 2, 4, 6. The difference in performance can be significant, for example atk = 4

andn = 12 in Figure 5, the relative loss for goes down from 15.93% for opportunistic splitting to 9.63%

for static splitting, i.e., a 40% reduction. Note that fork = 6 truncated opportunistic splitting has greater

than the average of2.5 ∗ 2 needed for the scheme to converge, yet static splitting does better.

At k = 8 in Figure 7, opportunistic splitting does better than static splitting. This is because ask

increases, opportunistic splitting is increasingly able to find the user with the highest rate. However, we

note that the engineering complexity needed for opportunistic splitting may not justify the gain it shows

over static splitting.

19

B. Performance of Joint Polling & Opportunistic Scheduling Scheme

As a second experiment we simulated the proposed JPOS scheme and its heuristic modification. In our

setup there were 12 best effort users and 12 real-time users. Each time unit consisted ofk = 6 mini slots

and was 5 msec long. The data transmission part of each time unit was 4.5 msec long (i.e.,ρ = 0.9) with

the rest being used to gather feedback. Each real-time user was given a guarantee of 40 kbps with an

outage probability of 1% over frame size varying from 100 time units to 600 time units in steps of 100

time units (i.e., 500 msec to 3 sec in steps of 500 msec).

We kept track of the throughput achieved by the schemes and whether the real-time users were able to

meet their guarantee. As expected the JPOS scheme was able to provide the required guarantee to all the

real-time users. Additionally, the heuristic modification was also able to provide the required guarantee

to all the real-time users in all the cases, supporting our conjecture that the heuristic modification will

be able to meet real-time users’ QoS requirements. We again compared the throughput achieved by the

schemes to a virtual scheme that always serves the user with the highest current rate. The results as a

percentage of throughput achieved by the virtual scheme are plotted in Fig 8. Note that the throughput

for both schemes increases as the QoS guarantee is given over longer time frames. We also observe that

the heuristic modification has a higher overall throughput, clearly illustrating the advantage of exploiting

inter class opportunism. Furthermore, both schemes are able to achieve a fairly high fraction of the overall

throughput possible, with the JPOS scheme achieving 79% and the heuristic modification achieving 89%.

V. CONCLUSION

In this paper we presented a simple scheme to reduce feedback overheads under opportunistic scheduling

in wireless networks. The scheme is novel in the sense that one can theoretically compute the required

contention thresholds independent of users’ distributions, making it applicable to real world scenarios.

The good performance of the proposed scheme is verified using simulations.

We also developed the insight that to reduce feedback in an opportunistic system where a mixture of

real-time and best effort traffic is being served a combination of contention and polling based feedback

20

approach is appropriate. We proposed two schemes based on this insight. Simulation results indicate that

both schemes are able to exploit a large part of the available opportunism.

REFERENCES

[1] P. Bender, P. Black, M. Grob, R. Padovani, N. Sindhushayana, and A. Viterbi. CDMA-HDR: A bandwidth-efficient high-speed wireless

data service for nomadic users.IEEE Communication Magazine,, pages 70–77, July 2000.

[2] T. Bonald. A score-based opportunistic scheduler for fading radio channels. InProc. of European Wireless, 2004.

[3] R. R. Boorstyn, A. Burchard, J. Liebeherr, and C. Oottamakorn. Statistical service assurances for traffic scheduling algorithms.IEEE

Journal on Selected Areas in Communications, 18:2651 – 2664, Dec. 2000.

[4] D. Gesbert and M. Slim-Alouini. How much feedback is multi-user diversity really worth? InProc. Int. Conf. on Commun., pages

234–238, June 2004.

[5] E. Knightly and N. B. Shroff. Admission control for statistical QoS: Theory and practice.IEEE Network, 13:20 – 29, Mar. 1999.

[6] R. Knopp and P. Humblet. Information capacity and power control in single cell multi-user communications. InProc. IEEE International

Computer Conference, volume 1, pages 331 – 335, June 1995.

[7] D. Park, H. Seo, H. Kwon, and B. G. Lee. A new wireless packet scheduling algorithm based on the CDF of user transmission rates.

In Proc. IEEE Globecom, pages 528–532, November 2003.

[8] S. Patil. Opportunistic scheduling and resource allocation among heterogeneous users in wireless networks, Ph.D. thesis, Univeristy of

Texas at Austin.available at http://www.ece.utexas.edu/˜ patil/Thesis.pdf, 2006.

[9] S. Patil and G. de Veciana. Managing resources and quality of service in wireless systems exploiting opportunism. InSubmitted for

journal publication, available at http://www.ece.utexas.edu/˜ patil/noniidQoS.pdf.

[10] S. Patil and G. de Veciana. Measurement-based opportunistic scheduling for heterogenous wireless systems. InSubmitted for journal

publication, available at http://www.ece.utexas.edu/˜ patil/measurement.pdf.

[11] X. Qin and R. Berry. Opportunistic splitting algorithms for wireless networks. InINFOCOM 2004. Twenty-Third Annual Joint

Conference of the IEEE Computer and Communications Societies, March 2004.

[12] X. Qin and R. Berry. Opportunistic splitting algorithms for wireless networks with heterogeneous users. InProc. Conference on

Information Sciences and Systems (CISS), March 2004.

[13] S. Sanayei, A. Nosratinia, and N. Aldhahir. Opportunistic dynamic subchannel allocation in multiuser OFDM networks with limited

feedback. InIEEE Information Theory Workshop, October 2004.

[14] P. Svedman, S. K. Wilson, L. Cimini, and B. Ottersten. A simplified feedback and scheduling scheme for OFDM. InIEEE Vehicular

Technology Conference, May 2004.

[15] T. Tang and R. W. Heath. Opportunistic feedback for downlink multiuser diversity.IEEE Communication Letters, 9:948–950, 2005.

21

TABLE I

OPTIMUM VALUES OF QUANTILE THRESHOLDq

n
k

1 2 3 4 5 6 7

k = 2 0 0.6796 0.7591 0.8064 0.8380 0.8606 0.8777

k = 3 0 0.6931 0.7689 0.8134 0.8432 0.8647 0.8810

k = 4 0 0.7069 0.7791 0.8211 0.8491 0.8693 0.8847

k = 5 0 0.7205 0.7895 0.8291 0.8554 0.8744 0.8888

k = 6 0 0.7337 0.7998 0.8372 0.8620 0.8798 0.8934

k = 7 0 0.7462 0.8097 0.8452 0.8686 0.8854 0.8981

k = 8 0 0.7580 0.8191 0.8530 0.8752 0.8910 0.9030

k = 9 0 0.7690 0.8279 0.8604 0.8815 0.8965 0.9078

k mini slots

mini slot transmission slot

Fig. 1. Structure of a time unit.

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

3
��
��
��
��1 3 1 1 2 3

�
�
�

�
�
�

1 3 2
�
�
�

�
�
�

2
��
��
��
��

��
��
��
��

��
��
��
��1 2 1 2 2 3

Part IIPart I

Best effort user getting served

k mini slots
Broadcast of slot assignments

Real−time User 1 getting served

Real−time User 3 sending its current quantile

Fig. 2. Example of the JPOS scheme with frame size of10 time units and3 real-time users having2 tokens each.

��
��
��

��
��
��

1 2
��
��
��

��
��
��

��
��
��

��
��
��

1
�
�
�

�
�
�

1 3 3
��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

1 2 2 3

Best effort user getting served

k mini slots

3 2 1

Part I Part II

Broadcast of slot assignments

Real−time User 3 sending its current quantile

Real−time User 1 getting served

Fig. 3. Example of the heuristic based JPOS scheme with frame size of10 time units and3 real-time users having2 tokens each.

22

2 4 6 8 10 12 14
0

5

10

15

20

25

30

Total number of users n

R
el

at
iv

e
th

ro
ug

hp
ut

 p
er

ce
nt

ag
e

lo
ss

/p
en

al
ty

static splitting k = 2
truncated opportunistic splitting k = 2

Fig. 4. The relative percentage throughput loss due to static splitting and truncated form of opportunistic splitting fork = 2 mini slots and

an increasing number of users.

4 8 12 16 20 24 28
0

2

4

6

8

10

12

14

16

18

20

Total number of users n

R
el

at
iv

e
th

ro
ug

hp
ut

 p
er

ce
nt

ag
e

lo
ss

/p
en

al
ty

static splitting k = 4
truncated opportunistic spltting k = 4

Fig. 5. The relative throughput percentage loss due to static splitting and truncated form of opportunistic splitting fork = 4 mini slots and

an increasing number of users.

23

6 12 18 24 30 36 42
0

2

4

6

8

10

12

14

16

Total number of users n

R
el

at
iv

e
th

ro
ug

hp
ut

 p
er

ce
nt

ag
e

lo
ss

/p
en

al
ty

static splitting k = 6
truncated opportunistic splitting k = 6

Fig. 6. The relative throughput percentage loss due to static splitting and truncated form of opportunistic splitting fork = 6 mini slots and

an increasing number of users.

8 16 24 32 40 48 56
0

1

2

3

4

5

6

7

8

Total number of users n

R
el

at
iv

e
th

ro
ug

hp
ut

 p
er

ce
nt

ag
e

lo
ss

/p
en

al
ty

static splitting k = 8
truncated opportunistic splitting k = 8

Fig. 7. The relative throughput percentage loss due to static splitting and truncated form of opportunistic splitting fork = 8 mini slots and

an increasing number of users.

24

100 150 200 250 300 350 400 450 500 550 600
76

78

80

82

84

86

88

90

Frame size in number of time units

P
er

ce
nt

ag
e

of
 a

ch
ie

va
bl

e
th

ro
ug

hp
ut

joint polling & opportunistic scheduling
heuristic based on joint polling & opportunistic scheduling

Fig. 8. Percentage of achievable throughput realized by the JPOS scheme and it heuristic modification.

